Developmental exposure to bisphenol A alters expression and DNA methylation of Fkbp5, an important regulator of the stress response

نویسندگان

  • Efthymia Kitraki
  • Ivan Nalvarte
  • Ali Alavian-Ghavanini
  • Joëlle Rüegg
چکیده

Bisphenol A (BPA), an abundant endocrine disruptor, affects stress-responsiveness and related behaviors in children. In rats, perinatal BPA exposure modifies stress response in pubertal offspring via unknown mechanisms. Here we examined possible epigenetic modifications in the glucocorticoid receptor gene and its regulator Fkbp5 in hypothalamus and hippocampus of exposed offspring. We found increased DNA methylation of Fkbp5 and reduced protein levels in the hippocampus of exposed male rats. Similar effects were obtained in a male hippocampal cell line when exposed to BPA during differentiation. The estrogen receptor (ER) antagonist ICI 182,780 or ERβ knock-down affected Fkbp5 expression and methylation similarly to BPA. Further, BPA's effect on Fkbp5 was abolished upon knock-down of ERβ, suggesting a role for this receptor in mediating BPA's effects on Fkbp5. These data demonstrate that developmental BPA exposure modifies Fkbp5 methylation and expression in male rats, which may be related to its impact on stress responsiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bisphenol-A analogue (bisphenol-S) exposure alters female reproductive tract and apoptosis/oxidative gene expression in blastocyst-derived cells

Objective(s): One of the major endocrine-disrupting chemicals, Bisphenol-S (BPS) has replaced bisphenol-A due to public health anxiety. The present study evaluated low dosage BPS effect on female reproductive potential, hormonal disruption, and gene expression pathways of blastocyst-derived cells.Materials and Methods: NMRI female mice (...

متن کامل

Placental FKBP5 Genetic and Epigenetic Variation Is Associated with Infant Neurobehavioral Outcomes in the RICHS Cohort

Adverse maternal environments can lead to increased fetal exposure to maternal cortisol, which can cause infant neurobehavioral deficits. The placenta regulates fetal cortisol exposure and response, and placental DNA methylation can influence this function. FK506 binding protein (FKBP5) is a negative regulator of cortisol response, FKBP5 methylation has been linked to brain morphology and menta...

متن کامل

FKBP5 Genotype-Dependent DNA Methylation and mRNA Regulation After Psychosocial Stress in Remitted Depression and Healthy Controls

BACKGROUND Polymorphisms in the FK506 binding protein 5 (FKBP5) gene have been shown to influence glucocorticoid receptor sensitivity, stress response regulation, and depression risk in traumatized subjects, with most consistent findings reported for the functional variant rs1360780. In the present study, we investigated whether the FKBP5 polymorphism rs1360780 and lifetime history of major dep...

متن کامل

Pattern of DNA cytosine methylation in Aeluropus littoralis during temperature stress

DNA methylation as an epigenetic mediator plays the important role in spatial and temporal gene regulation and ensures the stability and the plasticity of organism. In this investigation, methylation sensitive amplification polymorphism (MSAP) were assessed in CCGG sites on a halophytic plant, Aeluropuslittoralis in response to different temperature stresses including freezing...

متن کامل

Melatonin Improves The Developmental Competence of Goat Oocytes

Objective DNA methylation is one the epigenetic mechanisms, which is critically involved in gene expression. This phenomenon is mediated by DNA methyl-transferases and is affected by environmental stress, including in vitro maturation (IVM) of oocytes. Melatonin, as an antioxidant, may theoretically be involved in epigenetic regulation via reductions of reactive oxygen species. This study was p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and Cellular Endocrinology

دوره 417  شماره 

صفحات  -

تاریخ انتشار 2015